
 1

Development of a Comprehensive Ticketing System for International Events

Project Manager: Chinmay Joshi

Lead Developer: Renu Dighe

UX/UI Designer: Suryateja Gudiguntla

Customer Success Manager: Sindhu Manchenahalli Lakshminarayana

Westcliff University

Professor Eve Thullen

June 26, 2024

 2

Table of Contents

Table of Contents 2
Development of a Comprehensive Ticketing System for International Events 6
Key Stakeholders and System Boundaries 6

Key Stakeholders 6
Internal Environment (within the organization) 6
External Environment (outside the organization) 7

Needs Analysis 9
User Accessibility 9
Scalability 9
Integration 9

Requirements Analysis 10
Functional Requirements 10
Non-Functional Requirements 10

Evaluation and Selection 11
Possible Alternative Solutions 11

Custom-Built Solution 11
Off-the-Shelf Solutions 11
Open-Source Solutions 12
Platform-Based Solutions 12
Hybrid Solutions 12

Evaluation Criteria 13
Technology Evaluation 13
Table 1 14
Comparison Chart for DBMS 14

Systems Architecture 15
Functional Architecture 15

User Registration and Authentication 15
Event Creation and Management 15
Ticket Sales and Distribution 15
Payment Processing 15
Customer Support 16
Reporting and Analytics 16

Physical Architecture 16
Web Server 16
Database Server 16

 3

Application Server 16
Payment Gateway Integration 16
Email/SMS Gateway 17
Mobile Application 17
Customer Support System 17

Decision Analysis and Support 19
Decision Matrix 19

Decision Matrix for Database Management Systems (DBMS) 19
Decision Matrix for Front-End Frameworks 20
Decision Matrix for Payment Processing Vendors 21

Risk Management 22
Technical Risks 22
Operational Risks 22
Financial Risks 22

Risk Register for the Ticketing System Project 23
Risk Register Key (Luko, 2014) 24

System Design 25
Users 25
Web Interface (Apache and Nginx) 25
Mobile Application 25
Customer Support System (Zendesk) 25
Application Server (Node.js/Django) 25
Database Server (MySQL/PostgreSQL) 26
Payment Gateway Integration (Stripe) 26
Email/SMS Gateway (SendGrid/Twilio) 26
Security Measures 26
Data Flow 26

Systems Integration 29
Approach Chosen for Systems Integration 29
Reference to the System Design Diagram 29
Interface 30

API Design 30
Middleware 30

Communication 31
Data Exchange 31
Error Handling and Recovery 31

Interoperability 32

 4

Integration Testing 32
Test and Evaluation 33

Unit Testing 33
Integration Testing 33
System Testing 34
User Acceptance Testing (UAT) 34
Performance Testing 35
Security Testing 35
Evaluation Plans 38

Test Plan Documentation 38
Continuous Testing 38
Reporting and Metrics 38

Test Results Summary Chart 38
Production 39

Implementation Plan 39
Step 1: Preparation 39
Step 2: Infrastructure Setup 39
Step 3: Data Migration 39
Step 4: Application Deployment 40
Step 5: Integration and Testing 40
Step 6: User Training and Documentation 40
Step 7: Go-Live 40
Step 8: Post-Implementation Review 41

Resource Allocation 41
Personnel 41
Hardware and Software 41

Budget Allocation 41
Concept Development Phase 42
Engineering Development Phase 42
Post-Development Phase 43
Contingency: 43
Total Budget Estimate: 43

Deployment Strategy 43
Minimal Downtime Deployment 43
Rollback Procedures 44

Prototype Plan 44
Development 44

 5

Testing 44
Feedback Collection 44
Iteration 44

Training Plan 45
Post-Implementation Review 45

Operation and Support 45
Documentation 45

User Documentation 45
Technical Documentation 46

Monitoring and Maintenance Plans 47
System Monitoring 47
Maintenance Plans 47

Conclusion 48
Team Member Contributions 49
References 51

 6

Development of a Comprehensive Ticketing System for International Events

Just imagine a world where purchasing tickets for any of your favorite events is seamless,

secure & tailored according to our preferences, no matter where you are. This document unveils

the blueprint for such an experience which goes over a comprehensive development process for a

new international ticketing system, encompassing the concept, engineering, and

post-development phases. The proposed system is designed to offer a holistic solution for

managing and purchasing tickets for a wide array of events, including concerts, theater

performances, and sports events. Our primary objective is to address the unique challenges and

diverse needs of the global event industry by creating a robust, scalable, and user-friendly

platform.

The focus is on developing a ticketing system that not only ensures a seamless and

intuitive user experience but also meets the varied demands of event organizers and attendees

worldwide. This comprehensive approach is tailored to meet the evolving needs of the

international market, ensuring the system's relevance and effectiveness in a dynamic and

competitive environment.

Key Stakeholders and System Boundaries

Key Stakeholders

Internal Environment (within the organization)

The project team is made up of various important positions that are necessary for the new

international ticketing system's successful development and implementation. This includes

stakeholders who are directly part of the organization developing the ticketing system (Mordecai

& Dori, 2017). They are involved in the planning, development, support, and promotion of the

system. The project manager oversees the entire undertaking and makes sure that all deadlines

 7

and goals are met. The system must be constructed and maintained by developers to guarantee its

dependability and functionality. The main goals of UX/UI designers are to create a user interface

that is easy to use for all users. To make sure that the finished product is reliable and effective,

Quality Assurance (QA) testers are essential in checking the system for errors and usability

concerns.

The team also consists of IT support staff, who look after the infrastructure of the system

and offer technical assistance. Business analysts gather requirements and make sure the system

satisfies them, coordinating the project with the objectives of the company. The Marketing Team

is responsible for promoting the ticketing system and engaging with potential users, driving

awareness and adoption. This cooperative effort guarantees that every facet of the project is

well-planned and carried out.

External Environment (outside the organization)

 External stakeholders play a significant role in the success of the ticketing system. This

encompasses stakeholders outside the organization who interact with the system or are affected

by it (Webb, 2013). They include users, partners, regulatory bodies, and service providers. Event

Organizers use the system to create and manage events, ensuring they run smoothly and attract

attendees. End Users, or customers, interact with the system to purchase tickets and participate in

events. Payment Processors facilitate transactions and ensure secure payments, maintaining user

trust and financial integrity. Regulatory Bodies ensure the system complies with legal and

regulatory requirements, protecting both the company and its users. Third-Party Service

Providers offer additional services such as social media integration and analytics tools,

enhancing the system’s functionality. Partners and Sponsors collaborate on events and

promotions, contributing to the system’s growth and reach. Vendors provide software or services

 8

that integrate with the ticketing system, adding value and expanding its capabilities. This

comprehensive network of external stakeholders is essential for delivering a successful and

widely adopted ticketing solution.

Figure 1

System Boundaries and Key Stakeholders

 9

Needs Analysis

Objective: Identify the primary needs of both event organizers and attendees to ensure the

ticketing system provides comprehensive solutions (Lindgaard et al., 2006).

User Accessibility

The system must be accessible to users from different geographic locations and support

multiple languages and currencies. This involves the integration of automatic language

translation services and currency converters to facilitate a seamless user experience across

different countries.

Scalability

The system's ability to manage fluctuating user traffic loads and ticketing demands is

essential, especially during high-demand events like major concerts or sporting events. To make

sure the infrastructure can withstand abrupt spikes without experiencing performance

degradation, scalability tests must be carried out (Hofmann & Lehner, 2001). For example, the

massive demand for Taylor Swift concert tickets caused Ticketmaster to crash during the sale,

underscoring the necessity for reliable and scalable systems to handle such large numbers of

transactions effectively.

Integration

The system should integrate seamlessly with existing event management tools, social

media platforms for marketing purposes, and promotional tools to enhance user engagement and

operational efficiency. This includes APIs for major social networks and CRM systems.

 10

Requirements Analysis

Objective: Define the functional and non-functional requirements that the ticketing

system must meet to satisfy identified needs (Editor, 2023).

Functional Requirements

● Real-time ticket availability updates to ensure that users see accurate ticket information at

any given time.

● Secure payment gateway integration that supports various payment methods, including

credit cards, PayPal, and other international payment systems.

● Multi-language support and currency conversion to cater to international users.

● Mobile compatibility and app integration allow users to access the system from any

device.

Non-Functional Requirements

● High reliability and uptime, especially during peak ticket sales periods.

● Scalable infrastructure capable of supporting large volumes of transactions

simultaneously.

● Strong security measures, including data encryption and compliance with international

data protection regulations, are needed to protect user data and prevent fraud.

 11

Evaluation and Selection

Objective: Determine the best technologies and frameworks for developing the ticketing system

based on the requirements analysis (Rowley, 1993).

Possible Alternative Solutions

When developing a comprehensive ticketing system for international events, several

alternative solutions were considered to ensure the selection of the most effective and efficient

system. Here are the possible alternative solutions evaluated:

Custom-Built Solution

Description: Developing a ticketing system from scratch tailored to specific requirements and

preferences.

Pros: Highly customizable; can be designed to perfectly fit business needs, full control over

features and functionalities.

Cons: High development cost, longer time to market, and significant technical expertise and

resources.

Off-the-Shelf Solutions

Description: Using existing commercial ticketing software available in the market.

Examples: Eventbrite, Ticketmaster, Brown Paper Tickets.

Pros: Quick implementation, lower upfront costs, proven reliability, and support.

Cons: Limited customization, potential for ongoing subscription costs, may not meet all specific

requirements.

 12

Open-Source Solutions

Description: Leveraging open-source ticketing software that can be freely used, modified, and

distributed.

Examples: Attendize, Ticketing System, OpenTickets.

Pros: cost-effectiveness, flexibility to customize, community support.

Cons: requires technical expertise to implement and customize, may lack professional support,

potential security vulnerabilities.

Platform-Based Solutions

Description: Utilizing ticketing functionalities provided by larger event management platforms.

Examples: Eventbrite, Cvent, RegFox.

Pros: comprehensive features for event management, integrated tools for marketing and

analytics, robust support.

Cons: higher costs, less flexibility, potential for vendor lock-in.

Hybrid Solutions

Description: Combining custom development with existing software to leverage the benefits of

both approaches.

Pros: Balanced approach offering customization and quicker deployment, ability to integrate

best-of-breed components.

Cons: Can be complex to manage, potential integration challenges, may require significant

investment in both time and resources.

 13

Evaluation Criteria

 The team considered several important factors before deciding on the best option among

the alternatives. Cost was the main factor to consider, including the initial outlay as well as

continuing costs. The time to market played a critical role in determining how quickly the

ticketing system could be launched and the solution put into place. Scalability was assessed to

make sure the system could support a growing user base and rising demand. While support and

maintenance concentrated on the accessibility of expert assistance and ease of maintenance,

customization capabilities were crucial to meet specific business needs. Security was of utmost

importance, and measures to safeguard user data and transaction information were assessed for

robustness. Lastly, user experience was considered, with a focus on overall satisfaction and ease

of use for both event organizers and attendees. The team was able to decide on the best course of

action for creating an extensive ticketing system for international events by carefully analyzing

these factors.

Technology Evaluation

● Evaluate database management systems (DBMS) such as PostgreSQL for relational data

storage and MongoDB for non-relational data like user interactions and logs.

● Assess web development frameworks such as ReactJS for building a dynamic front end

that can handle data updates and Angular for robust enterprise-level applications.

 14

Table 1

Comparison Chart for DBMS

Criteria PostgreSQL MongoDB

Type Relational DBMS NoSQL DBMS

Scalability Vertical scaling Horizontal scaling

Performance Efficient for complex queries High performance for read-heavy

workloads

Flexibility Schema-based Schema-less

Data Integrity Strong ACID compliance Eventual consistency, flexible data

models

Query Language SQL BSON (Binary JSON)

Use Cases Structured data, complex

transactions

Unstructured data, large scale data,

flexible schemas

Storage Efficient storage for structured

data

Efficient storage for large volumes of

unstructured data

Community

Support

Large and active Large and active

Maturity Established and widely used Newer, but rapidly growing

Examples of Use Financial systems, ERP Big data, real-time analytics

 15

Systems Architecture

Functional Architecture

The functional architecture focuses on what the system must do to achieve its objectives

(Kossiakoff et al., 2020). For our ticketing system, the key functions include:

User Registration and Authentication

● Function: Allow users to create accounts and log in securely.

● Description: Users can register with email or social media, log in, reset passwords, and

manage their profiles.

Event Creation and Management

● Function: Enable event organizers to create and manage events.

● Description: Organizers can create event listings, set dates, times, and venues, and

manage ticket availability.

Ticket Sales and Distribution

● Function: Facilitate the sale and distribution of tickets to users.

● Description: Users can browse events, select tickets, make payments, and receive

electronic tickets via email or mobile app.

Payment Processing

● Function: Handle secure payment transactions.

● Description: Integrate payment gateways to process credit and debit cards, PayPal, and

other payment methods.

 16

Customer Support

● Function: Provide customer support for users and event organizers.

● Description: Users can contact support via chat, email, or phone for assistance with issues

like ticket refunds, event information, and technical support.

Reporting and Analytics

● Function: Generate reports and analytics for event organizers.

● Description: Provide insights on ticket sales, attendance, revenue, and user demographics.

Physical Architecture

The physical architecture outlines the system's hardware and software components and

their interactions. Key components of our ticketing system include:

Web Server

● Component: Apache/Nginx server hosting the website and APIs.

● Function: Serve web pages and handle API requests.

Database Server

● Component: MySQL and PostgreSQL database.

● Function: Store user data, event details, ticket information, and transaction records.

Application Server

● Component: Server running the application backend (e.g., Node.js, Django).

● Function: Process business logic, manage user sessions, and interface with the database.

Payment Gateway Integration

● Component: Stripe and PayPal integration module.

● Function: Process payments securely and handle transactions.

 17

Email/SMS Gateway

● Component: SendGrid/Twilio integration.

● Function: Send confirmation emails, tickets, and notifications to users.

Mobile Application

● Component: iOS/Android app.

● Function: Allow users to browse events, purchase tickets, and receive notifications on

mobile devices.

Customer Support System

● Component: Zendesk and Freshdesk integration.

● Function: Manage customer support tickets and communications.

 18

Figure 2

System Architecture

 19

Decision Analysis and Support

Objective: Utilize decision-making tools to support the selection of technologies and vendors.

Decision Matrix

Develop a decision matrix to systematically evaluate technology choices based on

performance, cost, support, scalability, and security (Henrion et al., 1991). This tool will help

prioritize options and guide the decision-making process.

Table 2

Decision Matrix for Database Management Systems (DBMS)

Criteria PostgreSQL MongoDB

Performance 8 9

Cost 8 7

Support 9 8

Scalability 7 9

Security 9 8

Integration 8 8

Ease of Use 8 8

Community Support 9 8

Total 66 65

Summary:

● PostgreSQL: Strong in support, security, and community support, making it ideal for

systems requiring robust data integrity and complex transactions.

 20

● MongoDB: Excels in scalability and performance for read-heavy and unstructured data

use cases.

Table 3

Decision Matrix for Front-End Frameworks

Criteria ReactJS Angular

Performance 9 8

Cost 8 7

Support 9 8

Scalability 8 7

Security 8 8

Integration 9 8

Ease of Use 9 7

Community Support 9 8

Total 69 61

Summary:

● ReactJS: Scores high overall, particularly in performance, ease of use, and community

support, making it a preferred choice for dynamic front-end development.

● Angular: Strong in performance and support but has a steeper learning curve, affecting

ease of use.

 21

Table 4

Decision Matrix for Payment Processing Vendors

Criteria Stripe PayPal Adyen

Performance 9 8 9

Cost 8 7 7

Support 9 8 8

Scalability 8 7 9

Security 9 9 9

Integration 9 9 8

Ease of Use 9 8 8

Community Support 8 8 8

Total 69 64 66

Summary:

● Stripe: Strong overall, particularly in performance, security, and integration, making it a

top choice for payment processing.

● PayPal: Reliable with high security and integration, but lower in performance and

scalability.

● Adyen: Strong in performance, scalability, and security, making it a solid choice for

international transactions.

 22

Risk Management

Objective: Identify potential risks associated with the project and develop strategies to mitigate

them (Risk Analysis in Engineering, n.d.).

Technical Risks

● Risk of downtime during high-traffic events.

Mitigation: Implement scalable cloud services like AWS or Azure and consider load balancing

technologies.

● Risk of data breaches.

Mitigation: Incorporate end-to-end encryption, regular security audits, and compliance with

international standards such as ISO/IEC 27001.

Operational Risks

● Risk of poor user adoption due to usability issues.

Mitigation: Implement a comprehensive beta testing phase that includes users from various

demographics to gather feedback and make necessary adjustments before the full launch.

Financial Risks

● Risk of budget overruns.

Mitigation: Establish a detailed budget framework with contingencies and conduct regular

budget reviews to ensure the project remains within financial limits.

 23

Table 5

Risk Register for the Ticketing System Project

Risk
ID

Risk
Description

Impact
Level
(1-5)

Likelihood
Level (1-5)

Risk Score
(Impact x
Likelihood) Mitigation Strategy

R1

Downtime
during
high-traffic
events 5 4 20

Implement scalable cloud services
like AWS or Azure, use load
balancers, and conduct regular load
testing.

R2
Data
breaches 5 3 15

Employ end-to-end encryption,
conduct regular security audits, and
comply with international standards
(e.g., ISO/IEC 27001).

R3

Poor user
adoption due
to usability
issues 4 3 12

Implement comprehensive beta
testing with diverse user
demographics and gather feedback
for UI/UX improvements.

R4
Budget
overruns 4 3 12

Establish a detailed budget
framework with contingencies and
perform regular financial reviews.

R5

Integration
issues with
third-party
tools 3 4 12

Conduct thorough compatibility
testing with existing event
management tools and ensure
robust API documentation.

R6

Payment
gateway
failures 4 2 8

Choose reliable payment
processors, maintain backup
payment gateways, and monitor
payment systems regularly.

R7

Legal and
regulatory
compliance
issues 4 3 12

Stay updated with international
regulations, consult legal experts,
and ensure compliance with data
protection laws (e.g., GDPR).

 24

R8

Performance
degradation
over time 3 3 9

Regularly optimize and update the
system, conduct performance
benchmarking, and use caching
strategies.

Risk Register Key (Luko, 2014)

Risk ID: Unique identifier for each risk.

Risk Description: Brief description of the potential risk.

Impact Level: Severity of the risk impact on the project (1 = Low, 5 = High).

Likelihood Level: Probability of the risk occurring (1 = Low, 5 = High).

Risk Score: Product of impact and likelihood levels, used to prioritize risks.

Mitigation Strategy: Actions to reduce the likelihood or impact of the risk.

 25

System Design

The detailed system architecture for the ticketing system combines the overall system

architecture, component design, data flow, and security measures into a single comprehensive

view. This architecture ensures scalability, reliability, and security, providing a robust framework

for the ticketing system.

Users

Users interact with the system through various interfaces, including a web interface,

mobile application, and customer support system (Maguire & Bevan, 2002).

Web Interface (Apache and Nginx)

The web server handles incoming HTTP requests, serves static content, and forwards

dynamic requests to the application server. It provides a secure and efficient interface for users to

interact with the system (Kithulwatta et al., 2022).

Mobile Application

The mobile app allows users to interact with the system on their mobile devices. It

communicates with the application server via API calls to process user requests (Aldayel &

Alnafjan, 2017).

Customer Support System (Zendesk)

The customer support system provides support to users through various channels,

managing support tickets, and resolving user issues (Reddy et al., 2022).

Application Server (Node.js/Django)

The application server processes the business logic of the system. It manages user

sessions, processes ticket purchases, handles event management, and communicates with the

database server and external services.

 26

Database Server (MySQL/PostgreSQL)

The database server stores all the system's data, including user information, event details,

and transaction records. It ensures data integrity and supports complex queries.

Payment Gateway Integration (Stripe)

The payment gateway handles all payment transactions securely. It processes payments

by various methods and ensures secure and compliant transactions.

Email/SMS Gateway (SendGrid/Twilio)

The email/SMS gateway is responsible for sending notifications to users, including ticket

confirmations, reminders, and updates.

Security Measures

Security is a critical aspect of the system design. The security measures include:

● TLS/SSL for Data in Transit: Ensures secure communication between clients and servers.

● AES-256 Encryption for Data at Rest: Protects sensitive data stored in the database.

● Multi-Factor Authentication: Enhances user authentication security.

● Role-Based Access Control (RBAC): Ensures that users can only access resources they

are authorized for.

● Secure Coding Practices: Prevents vulnerabilities such as SQL injection and XSS.

● Regular Security Audits: Ensures ongoing security and compliance.

Data Flow

● User Requests: Users interact with the web interface, mobile app, or customer support,

which sends requests to the application server.

● Business Logic: The application server processes these requests, executes the necessary

business logic, and interacts with the database server to retrieve or store data.

 27

● Payment Processing: For payment transactions, the application server communicates with

the payment gateway to process payments securely.

● Notifications: After successful transactions or important updates, the application server

sends notifications to users via the email/SMS gateway.

● Customer Support: Users can contact the customer support system for assistance, and the

application server provides relevant information to support agents.

By integrating all these elements into a single detailed diagram, the system architecture provides

a comprehensive overview of the ticketing system's design, ensuring clarity and facilitating

effective communication among stakeholders.

 28

Figure 3

System Design

 29

Systems Integration

To make sure that all of the ticketing system's components function as a whole, systems

integration is essential. This section describes the strategy used to integrate the system's

components, emphasizing interfaces, communication techniques, and other factors to guarantee

seamless operation.

Approach Chosen for Systems Integration

The method of systems integration that has been selected makes use of middleware,

RESTful APIs, and standardized data formats to facilitate effective communication and data

exchange between components. This strategy guarantees flexibility, scalability, and

maintainability, making it simple to integrate with outside services and grow in the future. We

ensured that every component is extensively tested prior to being integrated into the system by

using the incremental integration approach, which incorporates aspects of both top-down and

bottom-up integration (Sneed, 2005).

Reference to the System Design Diagram

The fundamental blueprint for system integration is the comprehensive system

architecture depicted in Figure 3 and covered in the System Design section. This diagram shows

the integration points and data flow between the various ticketing system components and how

they interact with one another. We guarantee that all integration efforts are in line with the

overall system architecture by adhering to this thorough design, preserving consistency and

coherence throughout the development process.

 30

Interface

API Design

RESTful APIs are used to make it easier for components to communicate with one

another. In order to guarantee consistency and interoperability, these APIs specify a set of

guidelines and conventions for resource access and manipulation (Bogner et al., 2023).

● Standardization: The APIs follow standard HTTP methods (GET, POST, PUT, and

DELETE) and status codes to ensure clear communication and error handling.

● Documentation: Developers receive extensive API documentation outlining the formats

for requests and responses, endpoints that are available, and authentication requirements.

API documentation can be created interactively with tools such as Swagger.

● Versioning: API versioning is implemented to maintain backward compatibility and

manage changes effectively.

Middleware

Middleware serves as a layer of intermediary that makes it easier for various system

components to communicate and exchange data. By offering a single interface for

communication, it abstracts the complexities of integration (Raghupathy et al., 2022).

● Message Broker: A message broker like RabbitMQ or Apache Kafka is used to handle

asynchronous communication between components, ensuring reliability and scalability.

● Data Transformation: Data mapping and transformation are handled by middleware,

which transforms data between various formats and structures needed by different

components.

● Security: Using encryption, authorization, and authentication techniques, middleware

guarantees secure communication.

 31

Communication

Data Exchange

Data exchange between components is facilitated through standardized data formats and

protocols to ensure consistency and interoperability.

● JSON/XML: JavaScript Object Notation (JSON) and XML (eXtensible Markup

Language) are used as the primary data formats for API communication. They are both

human-readable and machine-readable, making them ideal for data exchange.

● RESTful Services: REST (Representational State Transfer) services are used for

synchronous communication, enabling components to request and retrieve data in

real-time.

● WebSockets: For real-time, bidirectional communication, WebSockets are used. This is

useful for live updates, such as ticket availability or event notifications.

Error Handling and Recovery

Effective error handling and recovery mechanisms are implemented to ensure system

reliability and robustness.

● Error Logging: Every error is methodically recorded, complete with timestamps,

impacted components, and error details. This aids in problem solving and raises system

dependability.

● Retry Mechanism: Automatic retry mechanisms are implemented for transient errors,

ensuring temporary issues do not disrupt the overall system functionality.

● Fallback Procedures: Fallback procedures are in place to handle critical failures

gracefully, such as redirecting traffic to backup servers or using cached data.

 32

Interoperability

Interoperability ensures that the ticketing system can seamlessly interact with other

systems and third-party services.

● External Services Integration: The system is designed to integrate with external

services such as payment gateways, email and SMS providers, and social media

platforms through well-defined APIs and SDKs.

● Standards Compliance: The system adheres to industry standards and protocols,

ensuring compatibility and interoperability with a wide range of services and

technologies.

Integration Testing

Integration testing verifies that different components of the system work together as

expected, identifying issues that may arise from interactions between components.

● Test Cases: Comprehensive test cases are developed to cover various integration

scenarios, including normal operations, edge cases, and failure modes.

● Automation: Automated integration tests are implemented using tools like Postman and

Selenium, enabling continuous testing and rapid identification of issues.

● Continuous Integration (CI): A CI pipeline is set up to automatically run integration

tests whenever new code is committed, ensuring early detection of integration issues and

maintaining system stability.

 33

Test and Evaluation

Ensuring the dependability and quality of the ticketing system requires efficient testing

and assessment. The tests and evaluation strategies that will be used to confirm that the system

satisfies its requirements and operates as anticipated are described in this section.

Unit Testing

Unit testing involves testing individual components or modules of the system to ensure

they function correctly in isolation (Garousi et al., 2020).

● Scope and Objectives: The primary objective of unit testing is to verify that each

component or module performs its intended function correctly. This helps identify and fix

defects early in the development process.

● Tools and Frameworks: Tools like JUnit (for Java), PyTest (for Python), and Mocha (for

JavaScript) will be used to create and run unit tests.

● Process: Developers will write test cases for each function or method within a module.

These tests will be run automatically as part of the continuous integration (CI) pipeline to

ensure ongoing code quality.

Integration Testing

Integration testing focuses on verifying that different components or modules work

together as intended (Reis et al., 2007).

● Scope and Objectives: The goal is to ensure that interfaces between components are

correctly implemented and that data flows smoothly between modules. This helps detect

issues that may arise from component interactions.

 34

● Test Cases and Scenarios: Comprehensive test cases will be developed to cover various

integration scenarios, including normal operations, edge cases, and failure modes. These

tests will verify data exchange, API calls, and middleware functionality.

● Automation Tools: Tools like Postman for API testing and Selenium for automated

browser testing will be used to automate integration tests.

System Testing

System testing involves testing the entire system to ensure it meets the specified

requirements.

● Scope and Objectives: The aim is to validate the end-to-end functionality of the system,

ensuring that it behaves as expected under various conditions. This includes verifying all

user interactions and backend processes.

● Test Environment: A staging environment that mirrors the production environment will

be set up for system testing. This environment will include all components and

integrations.

● Test Data and Scenarios: Realistic test data and scenarios will be created to simulate

actual user interactions and system operations. This includes testing different types of

events, ticket purchases, and user roles.

User Acceptance Testing (UAT)

User acceptance testing involves validating the system’s functionality and usability from

the end-users' perspective.

● Scope and Objectives: The objective is to ensure that the system meets user needs and

requirements. Feedback from actual users will be gathered to identify any usability issues

or unmet requirements.

 35

● Process: A group of representative users will be invited to test the system using

predefined scenarios. Their feedback will be collected through surveys and direct

observation.

● Criteria for Acceptance: Clear criteria for acceptance will be established, including

successful completion of tasks, user satisfaction, and the absence of critical defects.

Performance Testing

Performance testing evaluates the system’s performance under various conditions to

ensure it meets performance requirements (Srivastava, 2021).

● Scope and Objectives: The aim is to assess the system’s responsiveness, stability, and

scalability. This includes measuring response times, throughput, and resource utilization.

● Types of Performance Tests: Load testing, stress and endurance testing will be

conducted to check how the system performs with different loads and extended periods.

● Tools: Tools like JMeter and LoadRunner will be used to automate performance tests and

generate detailed performance metrics.

Security Testing

Security testing ensures that the system is secure and protected against threats.

● Scope and Objectives: The goal is to identify and fix security vulnerabilities, ensuring

the system is resilient against attacks such as SQL injection, cross-site scripting (XSS),

and data breaches.

● Types of Security Tests: Penetration testing, vulnerability scanning, and security code

reviews will be conducted.

● Tools: Tools like OWASP ZAP, Burp Suite, and Nessus will be used to perform security

testing and identify vulnerabilities.

 36

Figure 4

Test Coverage Diagram

 37

Figure 5

Testing Process Flowchart

 38

Evaluation Plans

Test Plan Documentation

Comprehensive test plans will be documented for each type of test, outlining the

objectives, scope, test cases, and criteria for success. This documentation ensures that testing is

systematic and thorough.

Continuous Testing

Continuous testing will be implemented as part of the CI pipeline, ensuring that tests are

run automatically whenever new code is committed. This helps identify and fix issues early,

maintaining high code quality throughout the development process.

Reporting and Metrics

Detailed test reports will be generated to provide insights into the test results, including

the number of tests passed, failed, and skipped. Key metrics such as defect density, test coverage,

and performance benchmarks will be tracked to monitor the system’s quality and readiness for

deployment.

Table 6:

Test Results Summary Chart

Test Type Passed Failed Pending

Unit Tests 85 10 5

Integration Tests 90 8 2

System Tests 80 15 5

Performance Tests 70 20 10

Security Tests 75 15 10

User Acceptance Testing (UAT) 88 10 2

 39

Production

Here are the specific plans for creating a prototype and putting the ticketing system into

place. According to Mantyla and Vanhanen (2011), the prototype plan stresses the development

and testing of a prototype in order to verify essential functionalities prior to a full-scale

deployment, whereas the implementation plan concentrates on the actions and resources needed

to put the system into production (Deng et al., 2001).

Implementation Plan

Step 1: Preparation

Finalize all pre-deployment tasks, including code review, system testing, and stakeholder

approval.

● Conduct a final code review to ensure all features are implemented correctly.

● Complete system testing to verify that all components work as expected.

● Obtain approval from key stakeholders for deployment.

Step 2: Infrastructure Setup

Set up the necessary infrastructure for hosting the system.

● Provision cloud servers (e.g., AWS, Azure) to host the web server, application server, and

database server.

● Configure load balancers to distribute traffic evenly across servers.

● Set up security measures, including firewalls, SSL certificates, and monitoring tools.

Step 3: Data Migration

Migrate existing data to the new system without data loss.

● Extract data from the current system and transform it into the required format.

 40

● Load the data into the new database.

● Validate the data to ensure accuracy and completeness.

Step 4: Application Deployment

Deploy the application in the production environment.

● Deploy the web server and application server code to the production environment.

● Configure environment variables and settings.

● Conduct a smoke test to verify that the deployment was successful.

Step 5: Integration and Testing

Ensure that all integrated services (e.g., payment gateway, email/SMS gateway) function

correctly.

● Integrate external services with the application.

● Perform end-to-end testing to ensure that all components interact correctly.

● Address any issues identified during testing.

Step 6: User Training and Documentation

Train users and provide documentation to facilitate system adoption.

● Develop training materials and conduct training sessions for end-users and

administrators.

● Provide comprehensive user manuals and technical documentation.

Step 7: Go-Live

Launch the system for public use.

● Execute the final deployment in the live environment.

● Monitor the system closely during the initial launch period.

● Provide immediate support to address any issues that arise.

 41

Step 8: Post-Implementation Review

Evaluate the success of the implementation and identify areas for improvement.

● Collect feedback from users and stakeholders.

● Analyze system performance and user satisfaction.

● Document lessons learned and plan for future improvements.

Resource Allocation

Personnel

● Project Manager: Oversees the deployment process and coordinates tasks.

● Developers: Responsible for code deployment and issue resolution.

● System Administrators: Manage server setup and configuration.

● QA Testers: Conduct final testing and validation.

● Trainers: Conduct user training sessions.

Hardware and Software

● Servers: Cloud servers for hosting the application.

● Tools: Deployment tools, monitoring tools, and security tools.

● Training Materials: Documentation, training videos, and user manuals.

Budget Allocation

This budget allocation provides a breakdown of estimated costs for each phase of the

project, including resources required for concept development, engineering development, and

post-development activities. It ensures that the project has adequate funding to support the

 42

creation of a robust, scalable, and user-friendly ticketing system that meets the needs of both

event organizers and attendees worldwide.

Concept Development Phase

● Research and Analysis: $30,000

This phase involves studying the market, target audience, and existing systems to gather insights

that will inform the development process.

● Stakeholder Interviews and Requirements Gathering: $20,000

Understanding the needs and expectations of stakeholders is crucial for aligning the project goals

with business objectives.

● Concept Design and Documentation: $25,000

Creating a detailed design and documentation plan helps in visualizing the end product and

setting the direction for development.

Engineering Development Phase

● Software Development (Developers): $200,000

The core of the project is where developers will write code to bring the ticketing system to life

based on the defined requirements.

● UX/UI Design: $50,000

Creating an intuitive and user-friendly interface is essential for a positive user experience.

● Quality Assurance Testing: $30,000

Testing ensures that the software functions as intended, is bug-free, and meets quality standards.

● Infrastructure Setup and Maintenance (IT Support Staff): $40,000

 43

Establishing the necessary infrastructure to host and support the ticketing system throughout its

lifecycle.

 Post-Development Phase

● Deployment and Launch: $15,000

Rolling out the system to production environments and making it available to users.

● Training for Internal Teams: $10,000

Providing training to internal teams ensures that they can effectively use and manage the system.

● Marketing and Promotion: $50,000

Promoting the system to users and stakeholders to drive adoption and usage.

● Ongoing Support and Maintenance: $35,000

Providing ongoing support ensures that the system remains functional, secure, and up to date.

Contingency:

(10% of Total Budget): $45,000

This amount is set aside to account for unforeseen circumstances or additional requirements that

may arise during the project.

Total Budget Estimate:

Total: $515,000

 The total budget estimate covers all project phases and ensures that there is adequate

funding for each aspect of ticketing system development and deployment.

Deployment Strategy

Minimal Downtime Deployment

Ensure that the deployment process causes minimal disruption to users.

 44

● Use blue-green deployment to switch traffic between two identical environments,

minimizing downtime.

● Schedule deployment during off-peak hours to reduce the impact on users.

Rollback Procedures

Provide a fallback option in case of deployment issues.

● Maintain backups of the previous version of the application.

● Implement automated rollback procedures to revert to the previous version if necessary.

Prototype Plan

● Objective: Develop a prototype to validate key functionalities and gather feedback

before full-scale deployment.

● Scope: Focus on critical features such as user registration, event creation, ticket sales, and

payment processing.

Development

● Develop the core features required for the prototype.

● Ensure that the prototype reflects the intended user experience and functionality.

Testing

● Conduct usability testing with a small group of representative users.

● Gather feedback on the prototype's functionality, usability, and performance.

● Iterate on the prototype based on user feedback to address any issues.

Feedback Collection

● Surveys and interviews with users who tested the prototype.

● Observational studies are needed to understand user interactions with the prototype.

Iteration

 45

● Analyze feedback to identify common issues and areas for improvement.

● Implement changes and enhancements based on user feedback.

● Conduct additional testing to validate the improvements.

Training Plan

Ensure that users are well-equipped to use the new system effectively.

● Workshops: Conduct hands-on training workshops for end-users and administrators.

● Webinars: Host online training sessions to reach a broader audience.

● Documentation: Provide comprehensive user manuals and quick reference guides.

Post-Implementation Review

Evaluate the success of the implementation and gather insights for future improvements.

● Surveys: Collect feedback from users and stakeholders on the system's performance and

usability.

● Performance Metrics: Analyze system performance metrics to identify any issues.

● Lessons Learned: Document lessons learned during the implementation process and

identify best practices for future projects.

Operation and Support

The plans for the ticketing system's operation and support after it is implemented are

described in this section (Menand, 2021). To guarantee that the system stays operational, safe,

and user-friendly, it covers documentation, monitoring, and support techniques (Hernantes et al.,

2015).

Documentation

User Documentation

Content:

 46

● User Manuals: Comprehensive guides detailing how to use the system’s features,

including user registration, event creation, ticket purchasing, and accessing support.

● Quick Reference Guides: Concise, easy-to-follow guides focusing on common tasks and

features.

● FAQs: A collection of frequently asked questions and answers to help users quickly

resolve common issues.

Distribution:

● Online Help Center: All documentation will be made available online, accessible

through the system’s help center.

● In-App Help: Contextual help embedded within the application to assist users as they

navigate the system.

Technical Documentation

Content:

● System Architecture Diagrams: Detailed diagrams illustrating the system’s architecture,

components, and data flow.

● API Documentation: Comprehensive documentation of all APIs, including endpoints,

request and response formats, authentication methods, and example code.

● Maintenance Guides: Procedures for routine maintenance tasks, including data backups,

system updates, and performance tuning.

● Security Guidelines: Detailed guidelines on maintaining system security, including

encryption standards, access controls, and incident response procedures.

Distribution:

 47

● Internal Wiki: A centralized repository for all technical documentation, accessible to

developers, system administrators, and support staff.

● PDF Downloads: Downloadable versions of key documents for offline access.

Monitoring and Maintenance Plans

System Monitoring

Objectives:

● Ensure System Uptime: Monitor system health and performance to ensure high

availability and reliability.

● Detect Issues Early: Identify and address issues before they impact users.

Tools:

● Monitoring Tools: Use tools like New Relic, Datadog, or Nagios to monitor system

performance, server health, and application metrics.

● Logging: Implement centralized logging using tools like ELK Stack (Elasticsearch,

Logstash, Kibana) to collect and analyze log data from all system components.

Metrics:

● Performance Metrics: Monitor CPU usage, memory usage, disk I/O, and network latency.

● Application Metrics: Track response times, error rates, transaction volumes, and user

activity.

● Security Metrics: Monitor login attempts, access patterns, and security incidents.

Alerts:

● Automated Alerts: Configure alerts to notify the support team of critical issues, such as

server downtime, high error rates, or security breaches.

 48

● Escalation Procedures: Define escalation paths to ensure timely resolution of critical

issues.

Maintenance Plans

Routine Maintenance:

● Software Updates: Regularly update software components to the latest versions to ensure

security and performance.

● Data Backups: Perform regular backups of all critical data to prevent data loss in case of

system failures.

● Database Maintenance: Conduct routine database maintenance tasks, such as indexing,

optimization, and integrity checks.

Security Maintenance:

● Vulnerability Scanning: Regularly scan the system for security vulnerabilities and apply

patches as needed.

● Access Reviews: Periodically review user access levels and permissions to ensure they

are appropriate and up to date.

● Incident Response: Maintain and periodically test an incident response plan to address

security breaches or other critical issues.

 49

Conclusion

The global ticketing system project aims to satisfy the diverse needs of global event

planners and participants. With the use of state-of-the-art technologies and robust security

measures, the system ensures a seamless, scalable, and user-friendly experience. From the initial

concept to post-deployment support, the project thoroughly outlines each stage of development

with an emphasis on user accessibility, scalability, and integration. The thorough requirements

analysis, which includes both functional and non-functional requirements, as well as the

selection of the best technological solutions, demonstrate the project's commitment to creating a

high-quality final product that meets the dynamic demands of the global events industry.

Despite the challenges caused by high development costs and the need for significant

technical expertise, the project's advantages in user experience, scalability, and security make it a

viable and sustainable solution. The project will remain on schedule and within budget thanks to

the risk management strategies in place, which address potential technical, operational, and

financial risks. The project's strong alignment with organizational goals and potential for

significant market impact position it to secure funding and gain leadership approval. This will

open the door for an effective implementation that will completely change the ticket market.

 50

Team Member Contributions

Chinmay Joshi

● Key Stakeholders and System Boundaries

● System Architectures

● Systems Integration

Renu Dighe

● Needs Analysis

● Requirements Analysis

● Test and Evaluation

Suryateja Gudiguntla

● Evaluation and Selection

● Decision Analysis and Support

● Risk Management

● System Design

Sindhu Manchenahalli Lakshminarayana

● Operation and Support

● Production

● Team Project Outline Documentation

 51

References

Aldayel, A., & Alnafjan, K. (2017). Challenges and best practices for mobile application

development. ICCDA ’17: Proceedings of the International Conference on Compute and

Data Analysis. https://doi.org/10.1145/3093241.3093245

Bogner, J., Kotstein, S., & Pfaff, T. (2023). Do RESTful API design rules have an impact on the

understandability of Web APIs? Empirical Software Engineering, 28(6).

https://doi.org/10.1007/s10664-023-10367-y

Deng, S., Xiang, Z., Taheri, J., Khoshkholghi, M. A., Yin, J., Zomaya, A. Y., & Dustdar, S.

(2021). Optimal application deployment in resource constrained distributed edges. IEEE

Transactions on Mobile Computing, 20(5), 1907–1923.

https://doi.org/10.1109/tmc.2020.2970698

Editor. (2023, November 30). Functional and Nonfunctional Requirements: Specification and

Types. AltexSoft.

https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification

-and-types/

Garousi, V., Rainer, A., Lauvås, P., & Arcuri, A. (2020). Software-testing education: A

systematic literature mapping. Journal of Systems and Software/the Journal of Systems

and Software, 165, 110570. https://doi.org/10.1016/j.jss.2020.110570

Henrion, M., Breese, J. S., & Horvitz, E. J. (1991). Decision analysis and expert systems. AI

Magazine, 12(4), 64–91. https://doi.org/10.1609/aimag.v12i4.919

Hernantes, J., Gallardo, G., & Serrano, N. (2015). IT Infrastructure-Monitoring Tools. IEEE

Software, 32(4), 88–93. https://doi.org/10.1109/ms.2015.96

https://doi.org/10.1145/3093241.3093245
https://doi.org/10.1007/s10664-023-10367-y
https://doi.org/10.1109/tmc.2020.2970698
https://doi.org/10.1016/j.jss.2020.110570
https://doi.org/10.1609/aimag.v12i4.919
https://doi.org/10.1109/ms.2015.96

 52

Hofmann, H., & Lehner, F. (2001). Requirements engineering as a success factor in software

projects. IEEE Software, 18(4), 58–66. https://doi.org/10.1109/ms.2001.936219

Kithulwatta, W. M. C. J. T., Jayasena, K. P. N., Kumara, B. T. G. S., & Rathnayaka, R. M. K. T.

(2022). Performance evaluation of docker-based Apache and NGinX web server. 2022

3rd International Conference for Emerging Technology (INCET).

https://doi.org/10.1109/incet54531.2022.9824303

Kossiakoff, A., Biemer, S. M., Seymour, S. J., & Flanigan, D. A. (2020). Systems engineering

Principles and practice. John Wiley & Sons.

Lindgaard, G., Dillon, R., Trbovich, P., White, R., Fernandes, G., Lundahl, S., & Pinnamaneni,

A. (2006). User Needs Analysis and requirements engineering: Theory and practice.

Interacting With Computers, 18(1), 47–70. https://doi.org/10.1016/j.intcom.2005.06.003

Luko, S. N. (2014). Risk Assessment Techniques. Quality Engineering, 26(3), 379–382.

https://doi.org/10.1080/08982112.2014.875769

Maguire, M., & Bevan, N. (2002). User Requirements Analysis. In IFIP advances in information

and communication technology (pp. 133–148).

https://doi.org/10.1007/978-0-387-35610-5_9

Mantyla, M. V., & Vanhanen, J. (2011). Software deployment activities and challenges - a case

study of four software product companies. 2011 15th European Conference on Software

Maintenance and Reengineering. https://doi.org/10.1109/csmr.2011.19

Menand, L. (2021, June 7). User Manuals. Document - Gale Academic OneFile.

https://go.gale.com/ps/i.do?id=GALE%7CA665625373&sid=googleScholar&v=2.1&it=r

&linkaccess=abs&issn=0028792X&p=AONE&sw=w&userGroupName=oregon_oweb&

isGeoAuthType=true&aty=geo

https://doi.org/10.1109/ms.2001.936219
https://doi.org/10.1109/incet54531.2022.9824303
https://doi.org/10.1016/j.intcom.2005.06.003
https://doi.org/10.1080/08982112.2014.875769
https://doi.org/10.1007/978-0-387-35610-5_9
https://doi.org/10.1109/csmr.2011.19
https://go.gale.com/ps/i.do?id=GALE%7CA665625373&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=0028792X&p=AONE&sw=w&userGroupName=oregon_oweb&isGeoAuthType=true&aty=geo
https://go.gale.com/ps/i.do?id=GALE%7CA665625373&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=0028792X&p=AONE&sw=w&userGroupName=oregon_oweb&isGeoAuthType=true&aty=geo
https://go.gale.com/ps/i.do?id=GALE%7CA665625373&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=0028792X&p=AONE&sw=w&userGroupName=oregon_oweb&isGeoAuthType=true&aty=geo

 53

Mordecai, Y., & Dori, D. (2017). Model-based requirements engineering: Architecting for

system requirements with stakeholders in mind. 2017 IEEE International Systems

Engineering Symposium (ISSE). https://doi.org/10.1109/syseng.2017.8088273

Raghupathy, V., Khalaf, O. I., Romero, C. a. T., Sengan, S., & Sharma, D. K. (2022). Interactive

middleware services for heterogeneous systems. Computer Systems Science and

Engineering, 41(3), 1241–1253. https://doi.org/10.32604/csse.2022.021997

Reddy, H. B. S., Reddy, R. R. S., & Jonnalagadda, R. (2022). Literature Review Process:

Measuring the effective usage of knowledge management systems in customer support

organizations. International Journal of Research Publication and Reviews, 3991–4009.

https://doi.org/10.55248/gengpi.2022.3.7.45

Reis, S., Metzger, A., & Pohl, K. (2007). Integration Testing in software Product line

Engineering: a Model-Based Technique. In Springer eBooks (pp. 321–335).

https://doi.org/10.1007/978-3-540-71289-3_25

Risk analysis in engineering. (n.d.). Google Books.

https://books.google.com/books?hl=en&lr=&id=ErjFzRWSne8C&oi=fnd&pg=PA1&dq=

risk+assessment+techniques+systems+engineering&ots=ouDe_7KrUO&sig=AF3MUCM

yoqu1qUVGaiebATGhZ1s

Rowley, J. (1993). Selection and evaluation of software. Aslib Proceedings, 45(3), 77–81.

https://doi.org/10.1108/eb051309

Sneed, H. (2005). An Incremental Approach to System Replacement and Integration. Ninth

European Conference on Software Maintenance and Reengineering.

https://doi.org/10.1109/csmr.2005.9

https://doi.org/10.1109/syseng.2017.8088273
https://doi.org/10.32604/csse.2022.021997
https://doi.org/10.55248/gengpi.2022.3.7.45
https://doi.org/10.1007/978-3-540-71289-3_25
https://books.google.com/books?hl=en&lr=&id=ErjFzRWSne8C&oi=fnd&pg=PA1&dq=risk+assessment+techniques+systems+engineering&ots=ouDe_7KrUO&sig=AF3MUCMyoqu1qUVGaiebATGhZ1s
https://books.google.com/books?hl=en&lr=&id=ErjFzRWSne8C&oi=fnd&pg=PA1&dq=risk+assessment+techniques+systems+engineering&ots=ouDe_7KrUO&sig=AF3MUCMyoqu1qUVGaiebATGhZ1s
https://books.google.com/books?hl=en&lr=&id=ErjFzRWSne8C&oi=fnd&pg=PA1&dq=risk+assessment+techniques+systems+engineering&ots=ouDe_7KrUO&sig=AF3MUCMyoqu1qUVGaiebATGhZ1s
https://doi.org/10.1108/eb051309
https://doi.org/10.1109/csmr.2005.9

 54

Srivastava, N. (2021). Software and performance testing tools. Journal of Informatics Electrical

and Electronics Engineering (JIEEE), 2(1), 1–12.

https://doi.org/10.54060/jieee/002.01.001

Webb, T. E. (2013). Exploring System Boundaries. Law And Critique, 24(2), 131–151.

https://doi.org/10.1007/s10978-013-9118-0

https://doi.org/10.54060/jieee/002.01.001
https://doi.org/10.1007/s10978-013-9118-0

	Development of a Comprehensive Ticketing System for International Events
	Table of Contents

	Development of a Comprehensive Ticketing System for International Events
	Key Stakeholders and System Boundaries
	Key Stakeholders
	Internal Environment (within the organization)
	External Environment (outside the organization)

	Needs Analysis
	User Accessibility
	Scalability
	Integration

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	
	Evaluation and Selection
	Possible Alternative Solutions
	Custom-Built Solution
	Off-the-Shelf Solutions
	Open-Source Solutions
	Platform-Based Solutions
	Hybrid Solutions

	
	Evaluation Criteria
	Technology Evaluation
	Table 1
	Comparison Chart for DBMS

	
	Systems Architecture
	Functional Architecture
	User Registration and Authentication
	Event Creation and Management
	Ticket Sales and Distribution
	Payment Processing
	Customer Support
	Reporting and Analytics

	Physical Architecture
	Web Server
	Database Server
	Application Server
	Payment Gateway Integration
	Email/SMS Gateway
	Mobile Application
	Customer Support System

	
	Decision Analysis and Support
	Decision Matrix
	Decision Matrix for Database Management Systems (DBMS)
	Decision Matrix for Front-End Frameworks
	Decision Matrix for Payment Processing Vendors

	
	Risk Management
	Technical Risks
	Operational Risks
	Financial Risks
	Risk Register for the Ticketing System Project
	Risk Register Key (Luko, 2014)

	
	System Design
	Users
	Web Interface (Apache and Nginx)
	Mobile Application
	Customer Support System (Zendesk)
	Application Server (Node.js/Django)
	Database Server (MySQL/PostgreSQL)
	Payment Gateway Integration (Stripe)
	Email/SMS Gateway (SendGrid/Twilio)
	Security Measures
	Data Flow

	
	Systems Integration
	Approach Chosen for Systems Integration
	Reference to the System Design Diagram
	Interface
	API Design
	Middleware

	Communication
	Data Exchange
	Error Handling and Recovery

	
	Interoperability
	Integration Testing

	
	Test and Evaluation
	Unit Testing
	Integration Testing
	System Testing
	User Acceptance Testing (UAT)
	Performance Testing
	Security Testing
	
	Evaluation Plans
	Test Plan Documentation
	Continuous Testing
	Reporting and Metrics

	Test Results Summary Chart

	
	Production
	Implementation Plan
	Step 1: Preparation
	Step 2: Infrastructure Setup
	Step 3: Data Migration
	Step 4: Application Deployment
	Step 5: Integration and Testing
	Step 6: User Training and Documentation
	Step 7: Go-Live
	Step 8: Post-Implementation Review

	Resource Allocation
	Personnel
	Hardware and Software

	Budget Allocation
	Concept Development Phase
	Engineering Development Phase
	 Post-Development Phase
	Contingency:
	Total Budget Estimate:

	Deployment Strategy
	Minimal Downtime Deployment
	Rollback Procedures

	Prototype Plan
	Development
	Testing
	Feedback Collection
	Iteration

	Training Plan
	Post-Implementation Review

	Operation and Support
	Documentation
	User Documentation
	Technical Documentation

	Monitoring and Maintenance Plans
	System Monitoring
	Maintenance Plans

	Conclusion
	Team Member Contributions
	
	References

